
Supporting Information (Online)

The Limitations of Using Forced Choice in Electoral Conjoint Experiments

Giancarlo Visconti* Yang Yang†

January 29, 2025

Contents

A List of Published Articles Using Conjoint Analysis in Electoral Studies A-1

B Simulating Respondents’ Voting Behavior in Forced-Choice Conjoint Analyses A-2
B.1 Forced-Choice Design and Forced Voting Decisions . . . . . . . . . . . . . . . . . A-3
B.2 Bootstrapping Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . A-4

B.2.1 Simulation Set-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-5
B.2.2 Simulation Study 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-6
B.2.3 Simulation Study 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-8

C Additional Methods and Results A-11
C.1 Two-Step Heckmane Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-11
C.2 Inverse Probability Weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-15

*Assistant Professor, Department of Government & Politics, University of Maryland, College Park;
gvis@umd.edu.

†Ph.D. Candidate, Department of Political Science and Center for Social Data Analytics, Pennsylvania State Uni-
versity;yky5272@psu.edu

gvis@umd.edu
yky5272@psu.edu


A List of Published Articles Using Conjoint Analysis in Elec-
toral Studies

Paper Journal Context of Study Forced-Choice
Design

Thomas et al (2024) AJPS India Y
Greene (2022) AJPS Mexico Y
Spater (2022) AJPS India Y
Costa (2021) AJPS US Y
Frederiksen (2022) APSR Many Y
Teele, Kalla and Rosenbluth (2018) APSR US Y
Carnes and Lupu (2016) APSR US, UK, and Argentina Y
Rains and Wibbels (2023) BJPS India Y
Loewen and Rheault (2021) BJPS US and Canada Y
Campbell et al (2019) BJPS UK Y
Schuler (Forthcoming) CPS Vietnam Y
Laterzo (2024) CPS Argentina and Brazil Y
Ventura, Ley and Cantú (2023) CPS Mexico Y
Hankla et al (2023) CPS India Y
Singh (2022) CPS Argentina Y
Chou et al (2021) CPS Germany Y
Carter (2021) CPS Peru Y
Clayton et al (2019) CPS Malawi Y
Agerberg (2019) CPS Spain N
Arceneaux and Wielen (2023) Elect. Stud. US Y
Busby (2022) Elect. Stud. US Y
Kim (2021) Elect. Stud. Kenya Y
Kang et al (2021) Elect. Stud. Australia Y
Foulon and Reyes-Housholder (2021) Elect. Stud. Uruguay, Argentina and Chile Y
Shockley and Gengler (2020) Elect. Stud. Qatar Y
Vivyan et al (2020) Elect. Stud. Austria, Germany and UK Y
Badas and Stauffer (2019) Elect. Stud. US Y
Arnesen, Duell and Johannesson (2019) Elect. Stud. Norway Y
Gift and Lastra-Anadón (2018) Elect. Stud. US Y
Matsuo and Lee (2018) Elect. Stud. UK Y
Aguilar, Cunow and Desposato (2015) Elect. Stud. Brazil Y
Frederiksen (2024) JOP US, UK, Czech, Mexico, and

South Korea
Y

Driscoll and Nelson (2023) JOP US Y
Portmann (2022) JOP Switzerland Y
Henderson et al (2022) JOP US Y
Eshima and Smith (2022) JOP Japan Y
Weaver (2021) JOP Peru Y
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Paper Journal Context of Study Forced-Choice
Design

Magni and Reynolds (2021) JOP US, UK, and New Zealand Y
Bakker, Schumacher and Rooduijn (2021) JOP US Y
Schneider (2020) JOP Germany Y
Chauchard, Klašnja and Harish (2019) JOP India Y
Campbell et al (2019) JOP UK Y
Peterson and Simonovits (2018) JOP US Y
Eggers, Vivyan and Wagner (2018) JOP UK N
Peterson (2017) JOP US Y
Robinson (2023) PolBeh US Y
Wood (2023) PolBeh US Y
Visconti (2022) PolBeh Chile Y
Magni and Reynolds (2022) PolBeh US, UK, and New Zealand Y
Manento and Testa (2022) PolBeh US Y
Rehmert (2022) PolBeh Germany Y
Funck and McCabe (2022) PolBeh US Y
Neuner and Wratil (2022) PolBeh Germany Y
Saha and Weeks (2022) PolBeh US and UK Y
Martin and Blinder (2021) PolBeh UK Y
Rosenzweig (2021) PolBeh Kenya Y
Blackman and Jackson (2021) PolBeh Tusnia Y
Mummolo, Peterson and Westwood (2021) PolBeh US Y
Crowder-Meyer et al (2020) PolBeh US Y
Leeper and Robison (2020) PolBeh US Y
Ono and Burden (2019) PolBeh US Y
Kirkland and Coppock (2018) PolBeh US Y
Sances (2018) PolBeh US Y
DeMora et al (2022) POQ US Y
Lehrer, Stöckle and Juhl (2024) PSRM Germany N
Dai and Kustov (2023) PSRM US Y
Erlich and Beauvais (2023) PSRM Ukraine N
Ono and Yamada (2020) PSRM Japan Y
Mares and Visconti (2020) PSRM Romania Y
Horiuchi, Smith and Yamamoto (2020) PSRM Japan Y
Franchino and Zucchini (2015) PSRM Italy Y
Carlson (2015) WP Uganda Y

B Simulating Respondents’ Voting Behavior in Forced-Choice
Conjoint Analyses

In this section, we simulate plausible voting behaviors of respondents under both the typical
and proposed designs, evaluating the potential of our proposed design to improve how we conduct
electoral conjoint experiments.
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B.1 Forced-Choice Design and Forced Voting Decisions
When an electoral conjoint experiment compels respondents to choose between two candidate

profiles, they may approach the task strategically, particularly when they do not have a strong
preference for either profile. Consider a nationally representative sample that includes respondents
who have never participated in real-world elections and those who occasionally abstain from voting
despite being eligible. What plausible decision-making process might these respondents follow if
researchers deprive them of the option to abstain or cast a protest (blank or null) vote, forcing them
to choose between two candidates?

For respondents who are eligible voters but consistently abstain from real-world voting, one
possible coping approach when forced to choose is to appear cooperative. They might carefully
evaluate each profile based on certain criteria in a way they would not in real-world elections. This
behavior would not bias inference as long as, on average, they exhibit voting preferences similar to
those of regular voters. However, existing studies have shown that the political preferences of non-
voters and regular voters are distinct. If such respondents answer in a socially desirable way by
heavily valuing or devaluing certain attributes, such as being more or less educated, experienced,
younger or older, or holding certain policy positions, this could distort the aggregated preferences
in an unpredictable manner. Consequently, the measurement error bias can either be upward or
downward.

They might also approach the task by selecting between two candidates in a completely random
manner, similar to flipping a coin. At first glance, this might seem inconsequential: if respondents
whose true preference is to abstain are forced to randomly select between two candidates, their
random choices would not cause an estimation problem when we are interested in the difference
in aggregated preferences between the two profiles, given that measurement errors introduced by
random choices can be canceled out by the law of large numbers. However, since the estimators of
interest, AMCEs, are calculated by the weighted average of differences in means, we are essentially
interested in the average preference, that is, which candidates with certain attributes are more likely
to be selected on average. Forcing respondents who would prefer to abstain to make random voting
choices introduces downward biases. This is because, in a forced-choice conjoint analysis, the
difference in aggregated preferences between candidates is averaged over an entire sample that
includes everyone, even though in reality, non-voters should never be counted.

Likewise, although regular voters actively engage in elections, this does not necessarily mean
they always vote exclusively for one candidate or another. In reality, they might prefer to cast a
protest vote (blank or null) or abstain as needed. However, under a forced-choice design, when
they do not have a strong preference for either profile and are compelled to choose between the
two, they might make a random choice or a trade-off choice by considering some second-order
attributes to cope with the conjoint experiments.1 This type of decision-making is likely when they
find both candidates unattractive or indifferent. The estimates can be biased if respondents who
would prefer to abstain are forced to make either a random or trade-off choice, or if respondents
who would prefer to cast a protest vote are forced to make a random or a trade-off choice.

1By secondary attributes, we mean that if respondents do not have a strong preference for either profile and are
forced to make a choice, they might select certain attributes they care about more as the main criteria to decide which
candidate they slightly prefer in the second order.
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B.2 Bootstrapping Simulation Studies
We now present bootstrapping simulation studies to demonstrate how the typical forced-choice

conjoint design can introduce biases while the proposed unforced-choice design improves estima-
tion by reducing design-induced biases. To do this, we first assume that each respondent (voter) has
a randomly drawn utility function, which is linear and additive. This function aggregates multiple
dimensions into a composite criterion using the information provided by each candidate profile,
defined by eight attributes with varying number of levels:2

Religion: l1 ={Catholic, Protestant, None}

Education: l2 ={State university, Small college, Community college, Ivy League col-
lege, No college}

Profession: l3 ={Lawyer, High school teacher, Business owner, Farmer, Doctor, Car
dealer}

Income: l4 ={32K, 54K, 65K, 92K, 210K, 5.1M}

Race: l5 ={Black, Asian American, Native American, Hispanic, Caucasian}

Gender: l6 ={Male, Female}

Military Service: l7 ={Served, Did not serve}

Age: l8 ={45, 52, 60, 68, 75}

This produces 54,000 unique combinations of attribute levels, representing distinct candidates.
Let each simulated respondent be indexed by i ∈ {1, ..., N}. As defined, each conjoint profile is
composed of eight attributes represented by the corresponding {l1, ..., l8} ∈ L factors, where each
factor l has a total of Dl levels. For example, D1 = 3 and D2 = 5 represent the first and second
attributes, Religion and Education, varying with three and five levels respectively. Formally, our
latent utility function of respondent i for profile j is defined as follows:

Uj(i) =
L∑
l=1

αL(i) ∗Xj + εj(i) (1)

where Xj is a vector of Dl dummy variables for the levels of attributes contained in profile
j. The coefficient αL(i) denotes the specific utility value respondent i earns from any profiles
containing a certain level of factor l. All the coefficients are randomly drawn at the individual level
from a normally distributed population with predefined means and standard deviations, detailed in
Table A3 in Appendix B.2.1.

We assume there are two types of eligible voters (respondents) in the experiment: regular
voters and non-voters. These groups have distinct utility functions with different population means,

2These attributes and their values do not imply any substantive meaning in the simulation studies; they are used
solely to aid in readability. We utilize the primary attributes and values from Hainmueller, Hopkins and Yamamoto
(2014). However, we have omitted a few values due to memory constraints and the size limitations of the RStudio
environment we are using.
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reflecting their unique political preferences, as detailed in Section B.1. However, we do not assume
that each respondent always chooses profile j when its latent utility is higher than that of the other
profile j′ in comparison. In some cases, some respondents might not be interested in politics or
might find both candidates unattractive. As a result, they could be indifferent to both candidates
and might choose randomly or based on other criteria.

Respondents are complex decision-makers, and a forced-choice design can compel them to
make voting decisions that deviate from their unobserved true preferences in various ways. It
is challenging to determine the degree and direction of misclassification or external validity bias
introduced by a specific type of deviation when various forced decisions are mixed together. How-
ever, simulation tools allow us to fully model and customize respondent behaviors. Therefore, we
analyze each type of forced voting decision separately as an ideal case to gain a deeper understand-
ing of how a forced-choice design introduces biases. Table A2 summarizes the scenarios in which
a forced-choice conjoint design might introduce biases.

Table A2: Simulated Conjoint Scenarios

Scenarios Type of Voters True Preference
Forced-Choice Design

Observed Choice Decision-Making

1
Non-Voters Abstention Candidate A or B

Random
Cooperative

Regular Voters
Candidate A Candidate A =
Candidate B Candidate B =

2 Regular Voters

Candidate A Candidate A =
Candidate B Candidate B =

Abstention Candidate A or B
Random

Trade-Off

Protest Vote Candidate A or B
Random

Trade-Off

We use a simulated sample of 1,001 respondents (eligible voters) for each simulation scenario.
To evaluate the difference between forced-choice and unforced-choice electoral conjoint designs
in estimates, we generate randomized conjoint pairs of profiles and simulate the choices of each of
the 1,001 voters under both designs for every scenario. Following standard practices employed by
applied researchers, we generate 10 pairs of profiles for each voter. For simplicity, in all scenar-
ios and for all profiles in all pairs, we assume no interactions between attributes and independent
uniform distributions of all the levels, ensuring that all 54,000 candidate profiles are equally likely,
and all possible pairings between any two profiles are equally likely. Finally, using bootstrapping
method, we iterate the simulated conjoint analysis for each simulation scenario under both de-
signs 100 times to allow for a more robust evaluation of the statistical properties of our estimation
procedure.

B.2.1 Simulation Set-Up
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Table A3: Simulation Data-Generating Process: Parameters

Regular Function Socially Desirable Function
Religion-Catholic α11(i) ∼ N(µ11, 1) same

-Protestant α12(i) ∼ N(µ12, 1) same
-None α13(i) ∼ N(µ13, 1) same

Education-No college α21(i) ∼ N(µ21, 1) α21(i) ∼ N(µ2 ×−2, 1)
-State university α22(i) ∼ N(µ22, 1) same

-Small college α23(i) ∼ N(µ23, 1) same
-Community college α24(i) ∼ N(µ24, 1) α24(i) ∼ N(µ24 × 1.5, 1)
-Ivy League college α25(i) ∼ N(µ25, 1) α25(i) ∼ N(µ25 × 2, 1)
Profession-Lawyer α31(i) ∼ N(µ31, 1) same

-High school teacher α32(i) ∼ N(µ32, 1) same
-Business owner α33(i) ∼ N(µ33, 1) same

-Farmer α34(i) ∼ N(µ34, 1) same
-Doctor α35(i) ∼ N(µ35, 1) same

-Car dealer α36(i) ∼ N(µ36, 1) same
Income-32K α41(i) ∼ N(µ41, 1) same

-54K α42(i) ∼ N(µ42, 1) same
-65K α43(i) ∼ N(µ43, 1) same
-92K α44(i) ∼ N(µ44, 1) same

-210K α45(i) ∼ N(µ45, 1) same
-5.1M α46(i) ∼ N(µ46, 1) same

Race-Black α51(i) ∼ N(µ51, 1) same
-Asian American α52(i) ∼ N(µ52, 1) same

-Native American α53(i) ∼ N(µ53, 1) same
-Hispanic α54(i) ∼ N(µ54, 1) same

-Caucasian α55(i) ∼ N(µ55, 1) same
Gender-Male α61(i) ∼ N(µ61, 1) same

-Female α62(i) ∼ N(µ62, 1) same
Military Service-Did not Serve α71(i) ∼ N(µ71, 1) same

-Served α72(i) ∼ N(µ72, 1) α72(i) ∼ N(µ72 × 2, 1)
Age-45 α81(i) ∼ N(µ81, 1) same

-52 α82(i) ∼ N(µ82, 1) same
-60 α83(i) ∼ N(µ83, 1) α83(i) ∼ N(µ83 × 0, 1)
-68 α84(i) ∼ N(µ84, 1) α84(i) ∼ N(µ84 ×−1, 1)
-75 α85(i) ∼ N(µ85, 1) same

εj(1) ∼ N(0, 1) same

where, the sequences µ1i through µ8i are defined as follows: µ1i is a sequence of intervals
ranging from -3 to 8; µ2i spans intervals from -5 to 8; µ3i ranges from 0 to 6; µ4i covers intervals
from -4 to 5; and µ5i ranges from 0 to 8. Additionally, µ6i consists of two identical random numbers
drawn from integers between 2 and 10. The sequence µ7i spans intervals from 0 to 5, while µ8i

represents a sequence of decreasing intervals from -8 to 8.

B.2.2 Simulation Study 1

In the first scenario, we assume a nationally representative sample where regular voters consti-
tute 70% and non-voters make up 30%. We further assume that regular voters have clear prefer-
ences between each pair of candidates, always choosing the one with the highest utility. In contrast,
non-voters either choose randomly or select a candidate in a socially desirable manner by heavily
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valuing or devaluing certain attributes, such as education, age, and military experience, under the
forced-choice design. However, under an unforced-choice conjoint design, these non-voters would
choose to abstain. To examine how forcing non-voters to vote introduces measurement error bias,
we first assume that all non-voters only choose randomly, and then we consider the scenario where
they select a candidate only in the socially desirable way.

We generate 100 random samples from bootstrapping for each decision-making processes non-
voters and regular voters might follow in either forced- or unforced-choice conjoint experiments
and compute the sample means and sampling distributions. The sampling distributions that we
computed provide valuable insights into estimating average preference about which candidates
with certain attributes are more likely to be selected. Since the AMCEs are unbiased estimators, the
sampling distributions are centered around the true average preference of the population (voters).
The spread of the sampling distribution indicates the amount of variability induced by sampling
100 simulated conjoint analyses.

In Figure A1, the left panel compares the mean estimates based on the simulated conjoint data
in which non-voters who would prefer to abstain randomly select between candidates with those
based on the unforced-choice data where abstention is allowed. Similarly, the right panel compares
the mean estimates based on the simulated conjoint data in which non-voters who would prefer to
abstain are forced to choose candidates in a socially desirable manner with those based on the
unforced-choice data where abstention is available.

As can be seen from Figure A1, if respondents whose true preference is to abstain are forced
to randomly select between two candidates, the forced-choice conjoint design tends to generate
parameter estimates with smaller magnitudes — downward biases. In contrast, if respondents
whose true preference is to abstain are compelled to choose candidates in a socially desirable
manner, the forced-choice conjoint design tends to introduce either downward or upward biases,
depending on which attributes they might value or devalue more. For example, in our simulation,
we specifically assume and set up the socially desirable voting criteria such that, when forced to
choose candidates, cooperative abstainers devalue candidates aged 52 and 68, while they largely
value candidates educated at Ivy League colleges and those with military service. The results from
the right panel confirm that using a forced-choice design causes upward and downward biases in
the estimates of those attribute levels, to different degrees, where these biased selection criteria are
assumed.
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Figure A1: Simulated Choice-Based Mean Estimates in Scenario One. The estimated values based on
the simulated forced-choice and unforced-choice conjoint data are represented by the blue and red dots
and bars, respectively. All the dots show the mean estimates across all 100 simulated conjoint data sets
from bootstrapping, and the bars denote ±1.96 standard deviations and the minimum and maximum of the
estimates.

B.2.3 Simulation Study 2

In the second scenario, we assume there are no voters who consistently abstain from voting;
instead, all are regular voters. We further assume that a half of these regular voters possess clear

A-8



preferences, always choosing the candidate with the highest utility and avoiding null votes or
abstention under any design. The remaining half might prefer to abstain or cast a protest vote if
such options are available when presented with a pair of candidates delivering utilities lower than
the median candidate according to their own utility functions. We use this scenario to mirror the
real-world cases where some people do not vote for the “lesser of two evils.” We assume that when
forced to make a decision under the forced-choice design, they might choose to vote randomly or
make a trade-off decision by selecting the candidate with the highest utility based on the secondary
attributes they care about most, such as profession and age.

In the following simulations, we first examine scenarios where half of the regular voters’ true
preferences are to abstain, but they must vote either completely randomly or in line with their
secondary attribute-based preferences when both profiles have low utilities. We then explore cases
where the same group’s true preference is to cast a protest vote. Similar to Section B.2.2, we
generate 100 random samples and compute the sample means and sampling distributions for each
case. Figures A2 and A3 present the results for each case, respectively.

As shown in the left panel of Figure A2, when half of the regular voters’ true preferences are to
abstain but they vote randomly when confronted with both profiles having low utilities, it results in
downward bias for the AMCE estimates. This bias is particularly evident for those attribute levels
where respondents have a stronger preference compared to the reference level. However, if voters
base their decisions on secondary attributes when both profiles have low utilities, the estimates for
these secondary attributes and for those attribute levels where respondents do not have a strong
preference compared to the reference level are less likely to be biased, while other estimates show
varying degrees of bias.

In the right panel of Figure A2, we simulate a scenario where half of the regular voters’ true
preference is to abstain, but they end up voting based on second-order attributes, such as profession
and age, when faced with profiles offering low utility. Given our assumption that some respondents
prioritize profession and age as second-order attributes, we observe that the estimates of AMCEs
for these attributes remain largely unbiased. However, for other attributes, especially those where
respondents exhibit a stronger preference compared to the reference level, there is a noticeable
bias.

In the left panel of Figure A3, we consider a scenario in which half of the regular voters gen-
uinely prefer to cast a protest vote, but they end up voting randomly when both profiles present low
utilities. This randomness leads to a downward bias in the AMCE estimates, especially for attribute
levels where respondents demonstrate stronger preferences compared to the baseline. Similar to
the abstention scenario, this bias is more significant for attributes that voters prioritize heavily in
their decision-making process.

In the right panel of Figure A3, we simulate a situation where half of the voters intend to cast a
protest vote but instead rely on secondary attributes, such as profession and age, when neither pro-
file provides significant utility. In this case, the estimates of AMCEs for these secondary attributes
are mostly unbiased, reflecting the voters’ focus on these specific factors. However, for attributes
where respondents hold more pronounced preferences compared to the baseline, we observe vary-
ing degrees of bias, with some estimates deviating significantly from the true preferences, either
downward or upward.
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Figure A2: Simulated choice-based mean estimates in Scenario Two, where half of the respondents’ true
voting preference is to abstain. The estimated values based on the simulated forced-choice and unforced-
choice conjoint data are represented by the blue and red dots and bars, respectively. All the dots show the
mean estimates across all 100 simulated conjoint data sets from bootstrapping, and the bars denote ±1.96
standard deviations and the minimum and maximum of the estimates.
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Figure A3: Simulated choice-based mean estimates in Scenario Two, where half of the respondents’ true
voting preference is to to cast a protest vote. The estimated values based on the simulated forced-choice and
unforced-choice conjoint data are represented by the blue and red dots and bars, respectively. All the dots
show the mean estimates across all 100 simulated conjoint data sets, and the bars denote ±1.96 standard
deviations and the minimum and maximum of the estimates.

C Additional Methods and Results

C.1 Two-Step Heckmane Selection
We first employ the Two-Step Heckman Selection Approach, which is designed to account for

selection bias arising from non-random missingness. This method allows us to explicitly model the
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selection process—specifically, whether individuals choose to abstain or turn out—in estimating
the relationship between candidate attributes and respondent preferences.

The Heckman approach consists of two stages. The first stage, known as the selection equation,
models the likelihood that an observation is included in the sample, which in this case corresponds
to whether the respondent chooses to turn out ( Ti = 1 ). We use a probit model for this stage,
predicting the probability of turnout based on both profile attributes and respondent-level pre-
treatment covariates. The predictors in the selection equation include candidate or policy features
presented in the conjoint task, as well as respondent characteristics such as past voting history,
propensity to vote in the upcoming election, age, education, income, gender, and race. Mathemat-
ically, the selection equation is expressed as:

Pr(Ti = 1) = Φ(Ziβ) (2)

where Ti = 1 indicates the respondent turns out, Zi includes profile attributes and respondent
covariates, β represents the coefficients, and Φ is the cumulative distribution function of the probit
model.

From this stage, we compute the inverse Mills ratio (IMR) for each observation, which captures
the likelihood of inclusion based on the selection process. The IMR is given by:

IMRi =
ϕ(Ziβ)

Φ(Ziβ)
(3)

where ϕ and Φ are the probability density function and cumulative density function of the
normal distribution, respectively. This ratio is later used in the second stage to adjust for the
selection bias.

The second stage, known as the outcome equation, models the relationship between candidate
attributes (treatment variables) and the outcome variable ( Yi ) for the subset of respondents who
chose to turn out. This stage is a linear regression that resembles that in a conjoint analysis but
includes the inverse Mills ratio as an additional explanatory variable to control for selection bias.
The outcome equation is expressed as:

Yi = Xiγ + λ · IMRi + ϵi, (4)

where Yi is the choice-based outcome variable (e.g., vote choice), Xi represents the treatment
variables (candidate attributes), γ are the coefficients for the treatment effects, λ is the coefficient
for the inverse Mills ratio, and ϵi is the error term. The inclusion of the IMR ensures that the
estimates of γ are unbiased, even in the presence of selection bias.

The coefficients in the outcome equation represent the effects of candidate attributes on the
outcome variable, conditional on respondents being included in the sample (i.e., having chosen
to turn out). The selection equation accounts for the factors influencing the decision to abstain,
thereby correcting for bias introduced by non-random missingness. By explicitly modeling the
selection process, the Two-Step Heckman Selection Approach provides robust estimates of the
causal effects of candidate attributes, even when abstention behavior leads to deviations from com-
plete randomization. This approach ensures that our analysis remains valid and that the observed
treatment effects are accurately estimated, as shown in Figures A4 and A5.
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Figure A4: AMCEs of Presidential Candidate Attributes by Design: The left and middle panels present
the AMCE results for Presidential candidates under the control and treatment designs. The treatment design
estimates were obtained using the 2-step Heckman selection approach to account for potential selection
bias. The rightmost panel displays the differences in AMCEs for each attribute level, with horizontal bars
representing 95% confidence intervals robust to clustering at the respondent level. Red dots with red bars
denote significance at the 5% level, while red triangles with gray bars indicate significance only at the 10%
level. Gray dots with gray bars represent attribute levels that are not significant at either conventional level.
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Figure A5: AMCEs of Congressional Candidate Attributes by Design: The left and middle panels present
the AMCE results for Congressional candidates under the control and treatment designs. The treatment
design estimates were obtained using the 2-step Heckman selection approach to address potential selection
bias. The rightmost panel displays the differences in AMCEs for each attribute level, with horizontal bars
representing 95% confidence intervals robust to clustering at the respondent level. Red dots with red bars
indicate significance at the 5% level, while red triangles with gray bars denote significance only at the 10%
level. Gray dots with gray bars represent attribute levels that are not significant at either conventional level.
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C.2 Inverse Probability Weighting
We also apply Inverse Probability Weighting (IPW) as an alternative approach to mitigate po-

tential selection bias. Unlike the Two-Step Heckman Selection model, which explicitly models
the selection process, IPW adjusts for bias by reweighting the observed data to approximate the
distribution of the target population.

The IPW approach begins by estimating the probability of each respondent turning out (Ti =
1), conditional on both candidate attributes and respondent-level pre-treatment covariates. A logis-
tic regression model is used to estimate the turnout probability:

Pr(Ti = 1|D(k)
j , Xi) = Φ(Ziβ) (5)

where Zi includes the profile attributes ( D(k)
j ) and individual covariates ( Xi ), and Φ rep-

resents the cumulative distribution function of the logistic model. Once the probabilities are es-
timated, weights are assigned to each observation as the inverse of their estimated probability of
turnout:

wi =
1

Pr(Ti = 1|D(k)
j , Xi)

(6)

These weights are inversely proportional to the likelihood of being observed in the sample.
Observations with a lower probability of turnout (based on their characteristics and the presented
profiles) are assigned higher weights, ensuring that the weighted sample better represents the over-
all target population.

In the outcome analysis, these weights are incorporated directly into the estimation of the
Average Marginal Component Effects (AMCEs). The weighted AMCE is calculated as:

AMCEj(kk′) =

∑N
i=1 wi · (Yi|D(k)

j = 1)∑N
i=1wi

−
∑N

i=1wi · (Yi|D(k′)
j = 1)∑N

i=1wi

(7)

This weighted estimator adjusts for the non-random selection process introduced by abstention,
ensuring that the estimated treatment effects are robust to selection bias.

The key advantage of IPW lies in its flexibility. By reweighting the observed data, it addresses
differences in the likelihood of turnout across subgroups without requiring explicit modeling of
the selection process in the outcome equation. Additionally, using both pre-treatment covariates
and candidate attributes in the weighting model ensures that the estimated probabilities capture the
primary factors influencing abstention, reducing bias and aligning the weighted study population
with the intended target population. Figures A6 and A7 illustrate the robustness of our results
when using this approach.
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Figure A6: AMCEs of Presidential Candidate Attributes by Design: The left and middle panels present
the AMCE results for Presidential candidates under the control and treatment designs. The treatment design
estimates were obtained using the Inverse Probability Weighting approach to account for potential selection
bias. The rightmost panel displays the differences in AMCEs for each attribute level, with horizontal bars
representing 95% confidence intervals robust to clustering at the respondent level. Red dots with red bars
denote significance at the 5% level, while red triangles with gray bars indicate significance only at the 10%
level. Gray dots with gray bars represent attribute levels that are not significant at either conventional level.
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Figure A7: AMCEs of Congressional Candidate Attributes by Design: The left and middle panels present
the AMCE results for Congressional candidates under the control and treatment designs. The treatment de-
sign estimates were obtained using the Inverse Probability Weighting approach to address potential selection
bias. The rightmost panel displays the differences in AMCEs for each attribute level, with horizontal bars
representing 95% confidence intervals robust to clustering at the respondent level. Red dots with red bars
indicate significance at the 5% level, while red triangles with gray bars denote significance only at the 10%
level. Gray dots with gray bars represent attribute levels that are not significant at either conventional level.
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